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ABSTRACT: Over time, the offshore energy sector, focusing on wave and offshore wind energies, is gaining
more and more attention, due to their enormous energy potential. Yet, these technologies are still not com-
mercially viable due to many technical challenges. One of these challenges is the limited understanding of
resource behavior in specific areas. Traditionally, resource assessment involves deploying measuring devices to
monitor site-specific conditions over time, a method not feasible on a global scale due to the ocean’s vastness.
Alternatively, numerical simulations can estimate site conditions but face a trade-off between accuracy and com-
putational time, limiting their use. A promising solution lies in data-driven interpolation techniques, which can
expand in space and time the limited available measurements and/or be assimilated into numerical simulations.
This approach, similar to Kriging in mining engineering and Data Assimilation in weather forecasting, could
significantly enhance the offshore energy resource assessment. This article describes the essential parameters
for wave and wind energy assessment, then it discusses the interpolation techniques most commonly applied in
the offshore sector and finally it presents case studies using these techniques in this sector. Ultimately, the arti-
cle demonstrates the potential of these techniques to address offshore energy assessment challenges, leveraging
methods already proven in other fields.

1 INTRODUCTION

As global energy needs continue to rise, so does the
interest in harnessing renewable energy sources to
meet this growing demand. Among the various op-
tions for renewable energy, the offshore energy sector,
which mainly consists in wave energy and offshore
wind energy production, results to be particularly in-
teresting. The wave renewable sector stands out as a
particularly promising yet underexploited source with
vast potential (González 2021). Unlike other renew-
ables such as solar and wind, wave energy has still
not reached commercial success. This is due to sev-
eral challenges, like the lack of agreement on an op-
timal design that functions effectively across all sea
conditions (Bingyong Guo 2021).
Another significant challenge for the offshore renew-
able energy industry lies in accurately assessing suit-
able locations for deploying devices: in order to de-
termine the optimal deployment site for a device or
plant, it is crucial to evaluate the potential energy out-
put across various locations, ensuring it is situated
where it can generate the highest amount of energy
(Rusu 2014). Another critical information that has to
be evaluated when choosing a proper location is the
variability of the energy production in that location,

for example for considering the interactions with the
electric grid (Giglio et al. 2023).
For traditional sectors, two main routes are possible
for tackling the location assessment problems: using
measuring devices that actually measure and record
the real parameter values in the location of interest
or resorting to numerical physical simulation of the
system (Guillou et al. 2020), (Yang et al. 2022). Both
these routes are used for the offshore sector, but both
end up showing off their limits: the ocean is too vast
and complex to be characterized in its entirety by a re-
stricted number of expensive measuring devices, and
the dynamics regulating its evolution is given by the
Navier-Stokes equations, which are notoriously hard
to solve, translating in a non-negligible computational
time versus accuracy trade-off in the numerical simu-
lations.
An hidden third route may be given by resorting to
mathematical interpolation techniques. These tools
can offer a way for spatially and temporally extend-
ing the restricted amount of measurements available,
so generating more useful data for a proper location
assessment.
The following of this article is structured as follows:

• An accurate description of the actual state of the
art, regarding the wave and wind parameters of



interest, the devices used for measuring them and
the numerical tools available for simulating their
evolution.

• A presentation of the most used mathematical in-
terpolation techniques, highlighting the points of
strength and of weakness of each one, along with
a possible classification for them.

• A collection of case studies employing an inter-
polation technique in the offshore sector for a
specific parameter of interest, with some tables
resuming all these case studies.

• A final conclusion, underlying the main findings
of this article and depicting the possible future
steps.

2 STATE OF THE ART

For performing a location assessment of a specific
site, the time evolution in that location of some
parameters of interest is needed. This implies that
the first thing that has to be defined is which is the
parameter to be measured. After that a measuring
devices that can properly measure that parameter
has to be identified. For the numerical simulation
approach instead, a model for the system has to be
chosen, possibly considering already in this stage
the needed accuracy of the simulation, in order to
choose a model whose complexity is enough to give
the wanted accuracy, but no more complex since it
would unnecessarily increase the computational time
required for performing the simulation.

2.1 Parameters of interest

For wave energy, a sea state is totally characterized
by its wave spectrum. The wave spectrum provides
a complete characterization of the sea state by de-
scribing the distribution of wave energy across differ-
ent frequencies. Anyway characterizing the entirety
of a wave spectrum may be too difficult. Moreover
the whole spectrum could contain unnecessary or re-
dundant information. For most energy related applica-
tions, some synthetic parameters related to the wave
spectrum are enough. Typically two parameters are
considered: the significant wave height Hs and the en-
ergy period Te. Both these parameters can be obtained
from the wave spectrum by considering its spectral
moments:

Hs =
√
4m0 (1)

Te =
m−1

m0

(2)

where with mi it is indicated the ith spectral moment
of the wave spectrum.

For offshore wind energy instead, typically the pa-
rameter of interest is the horizontal wind speed at a
10m height, which is a 2d vector and can be repre-
sented either as a modulus |V | and a direction ∠V or
by its Cartesian components u, v.

u = |V | ∗ cos(∠V ) (3)

v = |V | ∗ sin(∠V ) (4)

This 10m height wind speed can then be extrapolated
to another height of interest (like the height of the ro-
tor hub of a wind turbine) using the typical vertical
exponential wind speed profile or more sophisticated
techniques (Optis et al. 2021).

2.2 Offshore measuring devices

Considering the offshore sector, the most common
measuring devices are in situ buoys (Urquhart et al.
2013),(Gambarelli et al. 2023) that have measuring
devices attached to them, for example recording the
wave elevation over time.
These measures are what is actually considered as
the ’ground truth’ being direct in situ measurement,
with a degree of trust way higher than that of nu-
merical simulations. The main problems related to
these devices are their cost and their maintenance ex-
penses: the ocean environment is notoriously hard to-
wards mechanical devices due to its corrosive prop-
erty and the presence of extreme events that can
damage the devices irreversibly. Moreover, a periodic
maintenance is needed for keeping the buoys opera-
tive, which translates in the need of reaching the buoy
offshore, with all the expenses associated.
These economic downsides are one of the main rea-
sons why also numerical simulation have to be used
for making location assessments in the offshore sec-
tor.
Almost all of these measuring devices are deployed
by large monitoring networks operated by national
and international programs such as NOAA (Meindl
and Hamilton 1992), Puertos del Estado (Pérez 2017),
Ifremer (Petrenko 2017) and POSEIDON-HCMR
(Papathanassiou 2005).
There are different types of offshore in situ measur-
ing devices, like moored instruments (K. W. Doherty
and Toole 1999), drifting instruments, autonomous
vehicle instruments (Sánchez et al. 2020) and coastal
structure instruments (B. Mutlu Sumer 2001). Each
one of these types is more suited for different specific
parameters and applicaitons.

2.3 Numerical models

For simulating these complex environments such as
the ocean and the atmosphere, different numerical
models exist, with different physical domains, used
equations, achieved accuracy and required computa-
tional time.
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Figure 1: Classification of the in situ measuring devices and their
main applications

Considering the offshore energy sector, it is possible
to divide these models into three categories, with re-
spect to the physical domain considered:

• Ocean models: These models are essential for
predicting the physical state of the sea, including
wave height, period, direction, and ocean cur-
rents. They directly influence the performance of
wave energy converters and offshore wind tur-
bines. Commonly used models include the Sim-
ulating WAves Nearshore (SWAN) (Booij et al.
1999), which utilizes the action balance equation
and is suitable for nearshore areas where wave
transformations are complex, and the WAVE-
WATCH III (WW3) (Tolman et al. 2019), which
solves the spectral action density balance equa-
tion, covering vast oceanic domains but requir-
ing substantial computational resources.

• Atmospheric models: These models simulate the
Earth’s atmosphere to predict wind speeds, di-
rections, and other meteorological parameters,
which are crucial for assessing offshore wind
energy sites. The two most commonly used at-
mospheric models are the WRF (Powers et al.
2017), which utilizes fully compressible non-
hydrostatic Euler equations with options for hy-
drostatic approximation, and the Global Fore-
cast System (GFS) (National Centers for Envi-
ronmental Prediction 2004), which is based on
the primitive equations governing fluid motion
on a rotating sphere and includes comprehensive
physics for atmospheric processes, such as ra-
diation, convection, cloud formation, and land-
surface interactions, but it runs at a coarser reso-
lution compared to mesoscale models like WRF.

• Integrated models: these multiphysical models
represent the pinnacle of complexity and com-
prehensiveness in environmental modeling by
synthesizing atmospheric, oceanic, wave, and
sometimes also biogeochemical processes into
a single framework. Two prominent integrated

models are the Coupled Ocean-Atmosphere-
Wave-Sediment Transport (COAWST) (Warner
et al. 2010), which integrates several models,
each governed by its own set of equations,
and can significantly increase its computational
complexity, depending on the desired resolu-
tion and extent of the simulated domain, and
the Earth System Models (ESMs) (Cox et al.
2000), which are governed by a comprehensive
set of equations covering atmospheric dynamics,
oceanography, cryospheric science, land surface
processes, and biogeochemistry, and are among
the most computationally intensive models in
environmental science, requiring vast comput-
ing power to simulate Earth’s components over
decadal to centennial timescales.

3 MATHEMATICAL INTERPOLATION
TECHNIQUES

Interpolation techniques are the mathematical tools
used for extending spatially and temporally a finite
set of measurements over a domain of interest. Here
it is reported a list of the most commonly used inter-
polation techniques, along with a brief description of
their mathematical principle.

• Inverse Distance Weighting (IDW): A determin-
istic interpolation whose key idea is that points
closer to the location of interest have more in-
fluence on the predicted value than those far-
ther away (Luo et al. 2008). Indeed the predicted
value is given as a linear combination of the
known values, with a coefficient that decreases
with the distance between them. Calling xi, the
positions of the n measured points, the predic-
tion at the generic point x0 will be given as in
Equation 5, where di is the distance between x0

and xi and p ≥ 1 is a design parameter .

f̂(x0) =

∑n
i=1wi · f(xi)∑n

i=1wi

=

∑n
i=1

1
dpi

· f(xi)∑n
i=1

1
dpi

,

(5)

• Thin Plate Spline (TPS): Another deterministic
interpolation named for its analogy to bending a
thin sheet of metal into the shape defined by a set
of points. The foundation of TPS interpolation is
based on minimizing a functional Etps,smooth(f)
(Tahir et al. 2023), shown in Equation 6, that rep-
resents a bending energy measure subject to fit-
ting the data points. This mathematical formula-
tion involves solving a system of linear equations
derived from this minimization problem, result-
ing in a smooth surface that can interpolate the
data points. In Equation 6, x1 and x2 represent 2



spatial dimensions, the xi are the K points to be
interpolated with yi the value measured at those

points and λ is a trade off parameter.

Etps,smooth(f) =
K∑
i=1

|yi − f(xi)|2 + λ

∫∫ [(
∂2f

∂x2
1

)2

+ 2

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x2
2

)2
]
dx1dx2. (6)

• Radial Basis Function (RBF): Also a deter-
mistic interpolation particularly used for mul-
tidimensional problem. Similar to Thin Plate
Splines (TPS), the interpolation problem in RBF
is framed as an optimization problem. As the
name suggests, the method is based on radial ba-
sis functions ϕ, which are a class of functions
whose value at any point depends solely on the
distance from that point to a certain center point.
These functions get added one at a time over
the domain of interest so generating an approx-
imation of the function to be reconstructed. The
whole process stops once a convergence criteria
is met and the final predicted value will be given
as in Equation 7, where l is a design parameter.

f̂(x0) =
n∑

i=1

wi · ϕ(
∥x0 − xi∥

l
), (7)

• Optimal interpolation (OI): One of the most used
geostatistical interpolation techniques for Data
Assimilation, specially in the meteorology sec-
tor. The core idea (Janjić et al. 2018) is that the
state of the system x and the measurements y can
be described as a vectors, with a linear mapping
H relating them. Usually the background state
vector xb is given by numerical simulation, while
the measurement vector yo from actual measure-
ments. Due to errors, the actual measurements
differ from the measurement vector obtained by
the mapping of the true (and unknown) state vec-
tor xt (Equation 8). The state vector is then con-
sequently updated in order to match more with
the actual measurements, trying not to diverge
too much from the original state vector, so ob-
taining the final state vector, called analysis state
xa (Equation 10). It is a geostatistical technique
since, using the Kalman gain matrix K, it ad-
dresses also the statistical properties of the mea-
surement vector and of the state vector and can
even provide an uncertainty range for the esti-
mates, by modelling the covariance matrices of
the measurement error ϵ and of the background
error ηb, which are respectively R and P b

yo = Hxt + ϵ (8)

xb = xt + ηb (9)

xa = xb +K(yo −Hxb) (10)

K = P bHT (HP bHT +R)−1, (11)

• 3-Dimensional Variational Data Assimilation
and 4-Dimensional Variational Data Assimila-
tion (3D-Var and 4D-Var): These are more ad-
vanced DA techniques where the assimilation
problem is cast into an optimization one (Hunt
et al. 2007). The variable to be tuned is called
the analysis state, representing the state obtained
by the assimilation of the real data into the nu-
merical simulation. The functional J to be op-
timized is given as the sum of two terms, one
quantifying the mismatch between the analysis
state the the simulation state J b, and the other
quantifying the mismatch between the analysis
state and the real measurements Jo. The 3D-Var
solves the optimization problem only consider-
ing the three spatial dimensions, while the 4D-
Var considers also the time, thus being more ac-
curate but also more computationally expensive.
Also variational techniques can provide an un-
certainty range.

J(xa) = J b(xa) + Jo(xa), (12)

J b(xa) = (xa − xb)T (P b)−1(xa − xb), (13)

Jo(xa) = (H(xa)− yo)TR−1(H(xa)− yo), (14)

• Local Ensemble Transform Kalman Filter
(LETKF): Unlike the previously mentioned DA
techniques, which were weakly coupled and
so considered the errors as uncorrelated (the
covariance matrices R and P b were considered
diagonal matrices), the LETKF is a strongly
coupled DA technique (Sluka et al. 2016), which
can directly address the correlation between the
errors. Since this can drastically increase the
computational time of the algorithm, a ensemble
range has to be defined and only inside each
ensemble the errors are allowed to be correlated.
This technique provides more accurate results
with respect to the other DA technique since it
can account for the spatial autocorrelation of
the errors. Like the previously mentioned DA
techniques, LETKF can also provide a measure
of uncertainty.



• Kriging techniques: a family of techniques orig-
inally developed for studying the distribution of
underground minerals (Degré et al. 2015). The
measurements of the parameter of interest are
considered as realizations of a stochastic pro-
cess, specified by a mean function and a covari-
ance function, modelled through a variogram.
Different choices for the type of those functions
give rise to different Kriging techniques. The
variogram is the instrument used for modelling
the spatial autocorrelation of the variable of in-
terest. The shape of the mean function and of
the variogram are specified a priori while their
parameters are tuned in order to fit the empiri-
cal measurements. These functions and the mea-
sured values are then used for obtaining an es-
timate of the parameter of interest where it is
not being measured through statistical inference.
Treating the variable of interest as a random
variable, also Kriging techniques can naturally
provide an uncertainty range for their estimates.
Considering a constant zero mean, the prediction
at the generic point x0 will be given as in Equa-
tion 15, where the weights wi are obtaining using
the variogram, modelling both the proximity and
the reduncancy of the stochastic process.

f̂(x0) =
n∑

i=1

wif(xi) (15)

4 CASE STUDIES DESCRIPTION

In this section, the considered case studies are de-
scribed along with tables highlighting their main fea-
tures. The case studies are divided into two categories
with respect to the type of interpolation technique
used: deterministic interpolation case studies and sta-
tistical/geostatistical interpolation case studies.

4.1 Deterministic interpolation case studies

Four articles focusing on the usage of deterministic
interpolation in the offshore sector have been con-
sidered in this work. Essentially, deterministic tech-
niques involve applying predefined functions to fit a
set number of training points across an entire domain.
Due to their straightforward nature, these methods
generally do not integrate any model-based physical
process information, relying solely on data for inter-
polation.
(Jahanmard et al. 2022) employs several interpola-
tors—linear, IDW, and TPS—not primarily to model
sea level but to merge diverse data sources (tide
gauge, hydrodynamic models, and satellite altimetry)
and interpolate errors relative to a numerical simu-
lation. The study highlights that the IDW interpola-
tor yields the most accurate and realistic outcomes.
Another analysis of deterministic interpolators is de-
tailed in (Knysh et al. 2022), which compares three

methods for assessing the vertical movement of cur-
rent velocity: averaging, linear interpolation, and RBF
interpolation. This research is crucial for accurately
feeding data into a numerical simulation. It demon-
strates that the simplifications inherent in the linear
and mean methods result in less realistic simulation
outputs than those achieved with the RBF interpola-
tion.
More complex deterministic interpolation techniques
are explored in (Liu et al. 2014) and (Støle-Hentschel
et al. 2021). (Liu et al. 2014) introduces two inno-
vative methods: the wavelet refined cubic technique
and the fractal method, specifically for addressing
time gaps in in situ measurements. These were tested
against a standard spline method at two different sites,
demonstrating superior performance, with the wavelet
method excelling at one site and the fractal method at
the other. On the other hand, (Støle-Hentschel et al.
2021) delves into the use of a deconvolution opera-
tor to reconstruct temporal gaps in wave measurement
data collected in situ. This reconstruction was initially
performed on a simulated numerical dataset (JON-
SWAP) and subsequently on actual in situ measure-
ments. The study also evaluates the robustness of this
technique by introducing noise into the data, showing
that the method can handle noise up to 10% of the
signal’s amplitude effectively.

4.2 Statistical and Geostatistical interpolation case
studies

Nine articles employing statistical/geostatistical in-
terpolation techniques have been considered in this
work, including (Wei and Davison 2022) even if
it focused on comparing deterministic and statisti-
cal/geostatistical techniques. Statistical/geostatistical
techniques are more complex and superior techniques
that can directly incorporate physical information
from a numerical model and often can also give an
estimate of the uncertainty in the predictions. In (Wei
and Davison 2022), in order to assess the potential for
wind-generated power in Jiangsu Province, the study
first required the interpolation of wind speed data.
The research compared several interpolation meth-
ods: Spline, Nearest Neighbor, IDW, and Oridnary
Kriging. After evaluating the accuracy of these meth-
ods through cross-validation, the Ordinary Kriging
method was selected for the assessment because it
produced the lowest error rates. This result under-
scores its suitability for providing the most reliable
data for further analysis of wind power potential,
compared to traditional deterministic techniques. Or-
dinary Kriging is used also in (Yin et al. 2022) for ex-
tending spatially the measurements of fish population
density. The spatially extended data are then analyzed
using a Generalized Additive Model (GAM) to ex-
plore the correlation between fish population density
and the presence of biomass. This methodological ap-
proach highlights the effectiveness of combining OK



Table 1: Deterministic interpolation case studies table. ♦: Only data and no model information used.♦: Information from a numerical
model used.

Ref. Domain Model Specific technique Interpolated parameter

(Liu et al. 2014) Time ♦ Wavelet refined method and fractal method Hs

(Støle-Hentschel et al. 2021) Time ♦ Deconvolution Wave Elevation
(Jahanmard et al. 2022) Space ♦ Linear Interpolator, IDW, TPS Sea level

(Knysh et al. 2022) Space ♦ Mean,Linear Interpolator, RBF Current Velocity

with GAM for detailed ecological assessments.

(Emmanouil et al. 2012) uses OI for interpolat-
ing Hs measurements from in situ devices and satel-
lites where no measurement are available, after hav-
ing processed the input data with a statistical Kalman
filter. Another practical application of OI is given by
(Houghton et al. 2022): the study utilizes measure-
ments from over 600 Sofar Spotter buoys to perform
a global DA on wave model spectra derived from the
WW3 (WaveWatch III) model. This assimilation, con-
ducted through OI, aligns the model with observed
data. Following the DA process, there was a notable
enhancement in the forecasts of all wave parameters.
Specifically, the improvements were approximately
38% for Hs and about 45% for the other wave pa-
rameters, demonstrating the effectiveness of OI in re-
fining model accuracy.
A variation of standard OI, known as Ensemble OI
(EnOI), is explored in (Liu et al. 2023). Unlike tra-
ditional OI, which uses a single simulation for back-
ground data, EnOI employs multiple simulations or
forecasts (ensemble members) to capture uncertainty
in the system. This approach involves considering
all these ensemble members during the data assim-
ilation process to improve the accuracy and robust-
ness of system state estimates. In this article the en-
hancements in forecasting the significant wave height
Hs are quantified following the integration of satel-
lite and in situ measurements using EnOI. The study
demonstrates that this DA technique reduces the sys-
tematic errors in the predictions. It also highlights
that the numerical simulations, when used alone, are
more accurate offshore than nearshore, underscoring
the value of EnOI in improving coastal forecasting
accuracy. (Smit et al. 2021) identifies a significant
limitation of OI when applied over long time peri-
ods, specifically in the context of assimilating Hs.
The study finds that the improvements in the back-
ground data provided by OI are less durable in sce-
narios where Hs is heavily influenced by wind speed.
This is because, in such cases, the system behaves
more like one driven by an external force (the wind),
making the updates less stable. Conversely, in situa-
tions where wind plays a less dominant role, the prob-
lem resembles more one of initial conditions, result-
ing in more lasting updates from the OI process.
(Sluka et al. 2016) and (Houghton et al. 2023) are the
only two studies that apply strongly coupled DA and
both perform the DA using the LETKF. (Sluka et al.
2016) focuses on updating sea surface salinity (SSS)
and sea surface temperature (SST), while (Houghton

et al. 2023) performs DA on the Hs results from the
WAVEWATCH III (WW3) wave model. Both studies
demonstrate that strongly coupled DA with LETKF
provides more accurate and realistic results compared
to weakly coupled DA, such as standard Optimal In-
terpolation (OI), despite requiring higher computa-
tional resources.
A final DA example is found in (Mao et al. 2023),
where the 4-dimensional variational technique is used
to incorporate in situ measurements and satellite im-
ages data in a numerical model, updating the back-
ground forecasts for sea surface height (SSH), sea
surface temperature (SST), subsurface temperature,
and subsurface salinity. Following the DA process,
the validation results indicate a reduction in the errors
across all parameters and the resulting distributions
appear more realistic compared to the initial forecasts.

5 CONCLUSIONS

This article introduces the problem of obtaining an
exhaustive set of measurements for an hostile envi-
ronment like the ocean. The main parameters of in-
terest for the offshore energy sector are described
along with the types of in situ measuring devices used
to measuring them and with the numerical models
used for simulating those systems. Then, a solution
to the problem of limited amounts of data is seen
in the mathematical interpolation techniques, and an
overview of these techniques is given.
After the theoretical introduction, 13 case studies em-
ploying interpolation techniques in the offshore sector
have been analyzed. Two main families of techniques
have been considered and used for classifying these
case studies. Statistical/geostatistical techniques seem
a more attractive alternative for many reasons, as sug-
gested by the number of articles in this category being
more than the double of the deterministic case studies.
Indeed, statistical techniques are tools with an higher
degree of complexity which are able to directly ad-
dress the uncertainty in the measurements and most
of them can even provide an estimate of the uncer-
tainty in the predictions. Moreover, different sources
of measures can be easily merged together with sta-
tistical techniques, and also a numerical model can be
integrated in the algorithm for improving the predic-
tions.
Due to their higher degree of complexity, statistical
techniques can also tackle more easily problems in the
Spacetime domain, unlike their deterministic coun-
terpart which mainly focus on either Space or Time.



Table 2: Statistical/geostatistical interpolation case studies table. ♦: Only data and no model information used.♦: Information from a
numerical model used.

Ref. Domain Model Specific technique Interpolated parameter

(Houghton et al. 2023) Spacetime ♦ LETKF Hs

(Smit et al. 2021) Spacetime ♦ OI Hs

(Sluka et al. 2016) Spacetime ♦ LETKF SSS,SST
(Emmanouil et al. 2012) Spacetime ♦ Statistical Kalman Filter with OI Hs

(Houghton et al. 2022) Spacetime ♦ OI Wave Directional Spectra
(Mao et al. 2023) Spacetime ♦ 4d-Var SSH,SST,SSS
(Liu et al. 2023) Spacetime ♦ Ensemble based OI Hs

(Yin et al. 2022) Space ♦ OK Fish Populations
(Wei et al. 2019) Space ♦ Spline, Natural Neighbor, IDW, OK Wind Speed

Anyway, due to their higher degree of complexity,
these techniques are more computationally demand-
ing with respect to their deterministic counterparts,
implying that when there is a huge quantity of avail-
able data, deterministic techniques may work better
due to their simplicity.
Future advancements in this field might include the
other sources of measurements. This, however, would
favor even more the usage of statistical techniques and
also more advanced data-driven technique, like tech-
nqiues from the Machine Learning field.
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